Abstract:
Calcium phosphates are suggested as a CO2 adsorbent via pressure swing adsorption. Amorphous calcium phosphate (ACP) and biphasic calcium phosphate (BCP) (composed of hydroxyapatite and beta-tricalcium phosphate) were investigated for the capture/immobilization of the gas. A fluidized bed was set up to assess the levels of CO2 adsorption by ACP and BCP. A gaseous mixture was synthesized, mimicking the conditions for possible industrial use. The results show a significant reduction in CO2 concentrations. Using DFT calculations, we show that CO2 adsorption increases the stability by reducing the surface energy. The energies involved and preferential adsorption sites were also theoretically predicted.